Default
Question
If $f(x) = 3x^2+15x+5$, then find the approximate value of $f(3.02)$.
Solution
The correct answer is 77.66
Explanation
To find $f(3.02)$ = $f(3 + 0.02)$
Given that $f(x) = 3x^2+15x+5$
⇒ $f(3) = 3(3)^2+15(3)+5$ = $77$
We can also derive $f'(x) = 6x+15$
⇒ $f'(3) = 6(3) + 15$ = $33$
We know that $f(x + \triangle{x})$ $\approx$ $f(x) + f'(x) \triangle x$
⇒ $f(3 + 0.02)$ $\approx$ $f(3) + f'(3) (0.02)$
Substituting the values of $f(3)$ and $f'(3)$ in the above equation, we get
$f(3 + 0.02)$ $\approx$ $77 + 33 (0.02)$ = $77.66$
0638a0aa-876d-11ed-94f3-5405dbb1cb03